915 resultados para major histocompatibility antigen class 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major histocompatibility complex genes are thought to be involved in allogeneic graft rejection but not many reports are available on their functional analysis in fish. Analysis of available sequences of MHC genes suggests functions in antigen presentation similar to those found in higher vertebrates. In mammals, the MHC class I and class II molecules are major determinants of allogeneic graft rejection due to their polymorphism in conjunction with their antigen presenting function. In fish, MHC class H molecules are found to be involved in rejection of allogeneic scale grafts. The present study was designed to investigate the involvement of MHC class I molecules in allograft rejection. Erythrocytes were collected from donors of rainbow trout expressed different class MHC class I alleles, stained with two dyes, mixed and grafted to the recipients that were of the same sibling group as the donors. The grafts were rejected by allogeneic recipients and the MHC class I linkage group was the major determinant for the rejection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen presentation by major histocompatibility complex (MHC) class II molecules requires the participation of different proteases in the endocytic route to degrade endocytosed antigens as well as the MHC class II-associated invariant chain (Ii). Thus far, only the cysteine protease cathepsin (Cat) S appears essential for complete destruction of Ii. The enzymes involved in degradation of the antigens themselves remain to be identified. Degradation of antigens in vitro and experiments using protease inhibitors have suggested that Cat B and Cat D, two major aspartyl and cysteine proteases, respectively, are involved in antigen degradation. We have analyzed the antigen-presenting properties of cells derived from mice deficient in either Cat B or Cat D. Although the absence of these proteases provoked a modest shift in the efficiency of presentation of some antigenic determinants, the overall capacity of Cat B−/− or Cat D−/− antigen-presenting cells was unaffected. Degradation of Ii proceeded normally in Cat B−/− splenocytes, as it did in Cat D−/− cells. We conclude that neither Cat B nor Cat D are essential for MHC class II-mediated antigen presentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protective/suppressive major histocompatibility complex (MHC) class II alleles have been identified in humans and mice where they exert a disease-protective and immunosuppressive effect. Various modes of action have been proposed, among them differential expression of MHC class II genes in different types of antigen-presenting cells impacting on the T helper type 1 (Th1)–Th2 balance. To test this possibility, the expression of H-2 molecules from the four haplotypes H-2b, H-2d, H-2k, and H-2q was determined on bone marrow-derived macrophages (BMDMs) and splenic B cells. The I-Ab and I-Ek molecules, both well characterized as protective/suppressive, are expressed at a high level on almost all CD11b+ BMDMs for 5–8 days, after which expression slowly declines. In contrast, I-Ad, I-Ak, and I-Aq expression is lower, peaks over a shorter period, and declines more rapidly. No differential expression could be detected on B cells. In addition, the differential MHC class II expression found on macrophages skews the cytokine response of T cells as shown by an in vitro restimulation assay with BMDMs as antigen-presenting cells. The results indicate that macrophages of the protective/suppressive haplotypes express MHC class II molecules at a high level and exert Th1 bias, whereas low-level expression favors a Th2 response. We suggest that the extent of expression of the class II gene gates the back signal from T cells and in this way controls the activity of macrophages. This effect mediated by polymorphic nonexon segments of MHC class II genes may play a role in determining disease susceptibility in humans and mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A challenge for subunit vaccines whose goal is to elicit CD8+ cytotoxic T lymphocytes (CTLs) is to deliver the antigen to the cytosol of the living cell, where it can be processed for presentation by major histocompatibility complex (MHC) class I molecules. Several bacterial toxins have evolved to efficiently deliver catalytic protein moieties to the cytosol of eukaryotic cells. Anthrax lethal toxin consists of two distinct proteins that combine to form the active toxin. Protective antigen (PA) binds to cells and is instrumental in delivering lethal factor (LF) to the cell cytosol. To test whether the lethal factor protein could be exploited for delivery of exogenous proteins to the MHC class I processing pathway, we constructed a genetic fusion between the amino-terminal 254 aa of LF and the gp120 portion of the HIV-1 envelope protein. Cells treated with this fusion protein (LF254-gp120) in the presence of PA effectively processed gp120 and presented an epitope recognized by HIV-1 gp120 V3-specific CTL. In contrast, when cells were treated with the LF254-gp120 fusion protein and a mutant PA protein defective for translocation, the cells were not able to present the epitope and were not lysed by the specific CTL. The entry into the cytosol and dependence on the classical cytosolic MHC class I pathway were confirmed by showing that antigen presentation by PA + LF254-gp120 was blocked by the proteasome inhibitor lactacystin. These data demonstrate the ability of the LF amino-terminal fragment to deliver antigens to the MHC class I pathway and provide the basis for the development of novel T cell vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice immunized with heat shock proteins (hsps) isolated from mouse tumor cells (donor cells) produce CD8 cytotoxic T lymphocytes (CTL) that recognize donor cell peptides in association with the major histocompatibility complex (MHC) class I proteins of the responding mouse. The CTL are induced apparently because peptides noncovalently associated with the isolated hsp molecules can enter the MHC class I antigen processing pathway of professional antigen-presenting cells. Using a recombinant heat shock fusion protein with a large fragment of ovalbumin covalently linked to mycobacterial hsp70, we show here that when the soluble fusion protein was injected without adjuvant into H-2b mice, CTL were produced that recognized an ovalbumin-derived peptide, SIINFEKL, in association with Kb. The peptide is known to arise from natural processing of ovalbumin in H-2b mouse cells, and CTL from the ovalbumin-hsp70-immunized mice and a highly effective CTL clone (4G3) raised against ovalbumin-expressing EL4 tumor cells (EG7-OVA) were equally effective in terms of the concentration of SIINFEKL required for half-maximal lysis in a CTL assay. The mice were also protected against lethal challenge with ovalbumin-expressing melanoma tumor cells. Because large protein fragments or whole proteins serving as fusion partners can be cleaved into short peptides in the MHC class I processing pathway, hsp fusion proteins of the type described here are promising candidates for vaccines aimed at eliciting CD8 CTL in populations of MHC-disparate individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Class I and class II molecules of the major histocompatibility complex present peptides to T cells. Class I molecules bind peptides that have been generated in the cytosol by proteasomes and delivered into the endoplasmic reticulum by the transporter associated with antigen presentation. In contrast, class II molecules are very efficient in the presentation of antigens that have been internalized and processed in endosomal/lysosomal compartments. In addition, class II molecules can present some cytosolic antigens by a TAP-independent pathway. To test whether this endogenous class II presentation pathway was linked to proteasome-mediated degradation of antigen in the cytosol, the N-end rule was utilized to produce two forms of the influenza virus matrix protein with different in vivo half-lives (10 min vs. 5 h) when expressed in human B cells. Whereas class I molecules presented both the short- and the long-lived matrix proteins, class II molecules presented exclusively the long-lived form of antigen. Thus, rapid degradation of matrix protein in the cytosol precluded its presentation by class II molecules. These data suggest that the turnover of long-lived cytosolic proteins, some of which is mediated by delivery into endosomal/lysosomal compartments, provides a mechanism for immune surveillance by CD4+ T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumors express peptide antigens capable of being recognized by tumor-specific cytotoxic T lymphocytes (CTL). Immunization of mice with a carcinogen-induced colorectal tumor, CT26, engineered to secrete granulocyte/macrophage colony-stimulating factor, routinely generated both short-term and long-term CTL lines that not only lysed the parental tumor in vitro, but also cured mice of established tumor following adoptive transfer in vivo. When either short-term or long-term CTL lines were used to screen peptides isolated from CT26, one reverse-phase high performance liquid chromatography peptide fraction consistently sensitized a surrogate target for specific lysis. The bioactivity remained localized within one fraction following multiple purification procedures, indicating that virtually all of the CT26-specific CTL recognized a single peptide. This result contrasts with other tumor systems, where multiple bioactive peptide fractions have been detected. The bioactive peptide was identified as a nonmutated nonamer derived from the envelope protein (gp70) of an endogenous ecotropic murine leukemia provirus. Adoptive transfer with CTL lines specific for this antigen demonstrated that this epitope represents a potent tumor rejection antigen. The selective expression of this antigen in multiple non-viral-induced tumors provides evidence for a unique class of shared immunodominant tumor associated antigens as targets for antitumor immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transmission of human immunodeficiency virus 1 (HIV-1) from an infected women to her offspring during gestation and delivery was found to be influenced by the infant's major histocompatibility complex class II DRB1 alleles. Forty-six HIV-infected infants and 63 seroreverting infants, born with passively acquired anti-HIV antibodies but not becoming detectably infected, were typed by an automated nucleotide-sequence-based technique that uses low-resolution PCR to select either the simpler Taq or the more demanding T7 sequencing chemistry. One or more DR13 alleles, including DRB1*1301, 1302, and 1303, were found in 31.7% of seroreverting infants and 15.2% of those becoming HIV-infected [OR (odds ratio) = 2.6 (95% confidence interval 1.0-6.8); P = 0.048]. This association was influenced by ethnicity, being seen more strongly among the 80 Black and Hispanic children [OR = 4.3 (1.2-16.4); P = 0.023], with the most pronounced effect among Black infants where 7 of 24 seroreverters inherited these alleles with none among 12 HIV-infected infants (Haldane OR = 12.3; P = 0.037). The previously recognized association of DR13 alleles with some situations of long-term nonprogression of HIV suggests that similar mechanisms may regulate both the occurrence of infection and disease progression after infection. Upon examining for residual associations, only only the DR2 allele DRB1*1501 was associated with seroreversion in Caucasoid infants (OR = 24; P = 0.004). Among Caucasoids the DRB1*03011 allele was positively associated with the occurrence of HIV infection (P = 0.03).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presentation of antigenic peptides by major histocompatibility complex (MHC) class II molecules to CD4+ T cells is critical to the function of the immune system. In this study, we have utilized the sorting signal of the lysosomal-associated membrane protein LAMP-1 to target a model antigen, human papillomavirus 16 E7 (HPV-16 E7), into the endosomal and lysosomal compartments. The LAMP-1 sorting signal reroutes the antigen into the MHC class II processing pathway, resulting in enhanced presentation to CD4+ cells in vitro. In vivo immunization experiments in mice demonstrated that vaccinia containing the chimeric E7/LAMP-1 gene generated greater E7-specific lymphoproliferative activity, antibody titers, and cytotoxic T-lymphocyte activities than vaccinia containing the wild-type HPV-16 E7 gene. These results suggest that specific targeting of an antigen to the endosomal and lysosomal compartments enhances MHC class II presentation and vaccine potency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4+ T cells recognize major histocompatibility complex (MHC) class II-bound peptides that are primarily obtained from extracellular sources. Endogenously synthesized proteins that readily enter the MHC class I presentation pathway are generally excluded from the MHC class II presentation pathway. We show here that endogenously synthesized ovalbumin or hen egg lysozyme can be efficiently presented as peptide-MHC class II complexes when they are expressed as fusion proteins with the invariant chain (Ii). Similar to the wild-type Ii, the Ii-antigen fusion proteins were associated intracellularly with MHC molecules. Most efficient expression of endogenous peptide-MHC complex was obtained with fusion proteins that contained the endosomal targeting signal within the N-terminal cytoplasmic Ii residues but did not require the luminal residues of Ii that are known to bind MHC molecules. These results suggest that signals within the Ii can allow endogenously synthesized proteins to efficiently enter the MHC class II presentation pathway. They also suggest a strategy for identifying unknown antigens presented by MHC class II molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies have characterized the transmembrane signaling events initiated after T-cell antigen receptor recognition of major histocompatibility complex (MHC)-bound peptides. Yet, little is known about signal transduction from a set of MHC class I recognizing receptors on natural killer (NK) cells whose ligation dramatically inhibits NK cell-mediated killing. In this study we evaluated the influence of MHC recognition on the proximal signaling events in NK cells binding tumor targets. We utilized two experimental models where NK cell-mediated cytotoxicity was fully inhibited by the recognition of specific MHC class I molecules. NK cell binding to either class I-deficient or class I-transfected target cells initiated rapid protein tyrosine kinase activation. In contrast, whereas NK cell binding to class I-deficient targets led to inositol phosphate release and increased intracellular free calcium ([Ca2+]i), NK recognition of class I-bearing targets did not induce the activation of these phospholipase C-dependent signaling events. The recognition of class I by NK cells clearly had a negative regulatory effect since blocking this interaction using anti-class I F(ab')2 fragments increased inositol 1,4,5-trisphosphate release and [Ca2+]i and increased the lysis of the targets. These results suggest that one of the mechanisms by which NK cell recognition of specific MHC class I molecules can block the development of cell-mediated cytotoxicity is by inhibiting specific critical signaling events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flaviviruses have been shown to induce cell surface expression of major histocompatibility complex class I (MHC-I) through the activation of NF-kappa B. Using IKK1(-/-), IKK2(-/-), NEMO-/-, and IKK1-/- IKK2-/- double mutant as well as p50(-/-) RelA(-/-) cRel(-/-) triple mutant mouse embryonic fibroblasts infected with Japanese encephalitis virus (JEV), we show that this flavivirus utilizes the canonical pathway to activate NF-kappa B in an IKK2- and NEMO-, but not IKK1-, dependent manner. NF-kappa B DNA binding activity induced upon virus infection was shown to be composed of RelA: p50 dimers in these fibroblasts. Type I interferon (IFN) production was significantly decreased but not completely abolished upon virus infection in cells defective in NF-kappa B activation. In contrast, induction of classical MHC-I (class 1a) genes and their cell surface expression remained unaffected in these NF-kappa B-defective cells. However, MHC-I induction was impaired in IFNAR(-/-) cells that lack the alpha/beta IFN receptor, indicating a dominant role of type I IFNs but not NF-kappa B for the induction of MHC-I molecules by Japanese encephalitis virus. Our further analysis revealed that the residual type I IFN signaling in NF-kappa B-deficient cells is sufficient to drive MHC-I gene expression upon virus infection in mouse embryonic fibroblasts. However, NF-kappa B could indirectly regulate MHC-I expression, since JEV-induced type I IFN expression was found to be critically dependent on it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To analyze major histocompatibility complex expression in the muscle fibers of juvenile and adult dermatomyositis. METHOD: In total, 28 untreated adult dermatomyositis patients, 28 juvenile dermatomyositis patients (Bohan and Peter's criteria) and a control group consisting of four dystrophic and five Pompe's disease patients were analyzed. Routine histological and immunohistochemical (major histocompatibility complex I and II, StreptoABComplex/HRP, Dakopatts) analyses were performed on serial frozen muscle sections. Inflammatory cells, fiber damage, perifascicular atrophy and increased connective tissue were analyzed relative to the expression of major histocompatibility complexes I and II, which were assessed as negatively or positively stained fibers in 10 fields (200X). RESULTS: The mean ages at disease onset were 42.0 +/- 15.9 and 7.3 +/- 3.4 years in adult and juvenile dermatomyositis, respectively, and the symptom durations before muscle biopsy were similar in both groups. No significant differences were observed regarding gender, ethnicity and frequency of organ involvement, except for higher creatine kinase and lactate dehydrogenase levels in adult dermatomyositis (p<0.050). Moreover, a significantly higher frequency of major histocompatibility complex I (96.4% vs. 50.0%, p<0.001) compared with major histocompatibility complex II expression (14.3% vs. 53.6%, p = 0.004) was observed in juvenile dermatomyositis. Fiber damage (p = 0.006) and increased connective tissue (p<0.001) were significantly higher in adult dermatomyositis compared with the presence of perifascicular atrophy (p<0.001). The results of the histochemical and histological data did not correlate with the demographic data or with the clinical and laboratory features. CONCLUSION: The overexpression of major histocompatibility complex I was an important finding for the diagnosis of both groups, particularly for juvenile dermatomyositis, whereas there was lower levels of expression of major histocompatibility complex II than major histocompatibility complex I. This finding was particularly apparent in juvenile dermatomyositis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have analyzed the effect of antibodies (Abs) directed against major histocompatibility complex (MHC) class II Abs on the proliferation of Theileria parva-infected (Tpi) T cells. Anti-MHC class II Abs exert a direct effect on Tpi T cells causing an acute block in their proliferation. The inhibition does not involve apoptosis and is also entirely reversible. The rapid arrest of DNA synthesis caused by anti-MHC class II Abs is not due to interference with the state of activation of the T cells since the transcriptional activator NF-kappa B remains activated in arrested cells. In addition, interleukin 2 (IL-2), IL-2R, and c-myc gene expression are also unaffected. By analyzing the cell-cycle phase distribution of inhibited cells, it could be shown that cells in all phases of the cell cycle are inhibited. The signal transduction pathway that results in inhibition was shown to be independent of protein kinase C and extracellular Ca2+. Tyrosine kinase inhibitors, however, partly reduced the level of inhibition and, conversely, phosphatase inhibitors enhanced it. The possible relevance of this phenomenon in other systems is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distant relatives of major histocompatibility complex (MHC) class I molecules, human MICA and MICB, function as stress-induced antigens that are broadly recognized by intestinal epithelial γδ T cells. They may thus play a central role in the immune surveillance of damaged, infected, or otherwise stressed intestinal epithelial cells. However, the generality of this system in evolution and the mode of recognition of MICA and MICB are undefined. Analysis of cDNA sequences from various primate species defined translation products that are homologous to MICA and MICB. All of the MIC polypeptides have common characteristics, although they are extraordinarily diverse. The most notable alterations are several deletions and frequent amino acid substitutions in the putative α-helical regions of the α1α2 domains. However, the primate MIC molecules were expressed on the surfaces of normal and transfected cells. Moreover, despite their sharing of relatively few identical amino acids in potentially accessible regions of their α1α2 domains, they were recognized by diverse human intestinal epithelial γδ T cells that are restricted by MICA and MICB. Thus, MIC molecules represent a family of MHC proteins that are structurally diverse yet appear to be functionally conserved. The promiscuous mode of γδ T cell recognition of these antigens may be explained by their sharing of a single conserved interaction site.